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Problem Statement 

Wetlands and surface water bodies were once a dominant feature across the landscape in Ohio with the 
Great Black Swamp covering much of what is northwestern Ohio today. Although the coverage of these 
features has drastically diminished in the past two centuries (Fretwell et al. 1996) the ecosystem 
services that they provide are innumerable. Wetlands provide habitat for endangered species, regulate 
stormwater runoff, and provide water purification services in agricultural areas. Indeed, some 
researchers believe that restoring the Great Black Swamp would solve the algal bloom issues in Lake 
Erie (see Mitsch 2017). Streams also provide benefits in the form of habitat, recreation, food (fish), and 
as a source for municipal water. It is for these reasons and more that wetlands and streams are 
protected under sections 404 and 401 of the Clean Water Act and the Ohio Isolated Wetlands Law (Ohio 
Revised Code 6111). These regulations require permits when fill material is discharged into regulated 
streams and wetlands, which also can require compensatory mitigation.  

Permitting and mitigation efforts are often time-consuming and, depending on the quality of resources 
and quantity of impact, require review and approval from the US Army Corps of Engineers (USACE) 
and/or the Ohio Environmental Protection Agency (OEPA). Additionally, identification and boundary 
determination of a jurisdictional wetland requires vegetation identification and inspection from US 
Army Corps personnel during the growing season. The overall permitting process could take months to 
years to complete. Credits can be purchased from mitigation banks or in lieu fee providers within the 
impacted watershed to offset impacts to streams or wetlands, but credits are not always available in 
the timeframe or location needed and can be difficult to identify ahead of time. The credits required 
to offset impacts to wetlands and streams are determined by the size and quality of the wetland or 
stream and often this is unknown until field verification occurs. If existing mitigation credits are not 
available, the cost and complexity of mitigation becomes much more significant (Koncelik, 2020).  

Road construction and maintenance projects can impact a wetland or stream through a variety of 
activities, such as culvert or bridge installation, new road construction, temporary access, rock channel 
protection, and building retaining walls. To mitigate these disturbances, the Ohio Department of 
Transportation (ODOT) often secures mitigation credits within a project’s watershed. Project 
construction cannot begin until impacted streams and wetlands are identified, permits have been 
obtained, and mitigation is secured; thus, the mitigation process can result in substantial delays in the 
Project Development Process (PDP). In addition to planning timelines, ODOT plans ahead for project 
costs within budget periods. For ODOT to develop accurate budgets, mitigation requirements and costs 
(including mitigation credits or need for a new mitigation site) must be identified. Projects within the 
revolving four-year plan are chosen with regard to many factors, stream and wetland mitigation among 
them, but because waterway permitting and mitigation efforts can be so costly and time consuming, 
they must be identified early in the PDP.  

ODOT has previously made efforts to predict mitigation needs of the four-year plan by using data 
available in ODOT’s Transportation Information Mapping System (TIMS); however, this method does not 
incorporate environmental factors such as topography, soil type, or vegetation but instead relies on the 
number of past mitigation efforts in the watershed as well as information on the mitigation bank and in 
lieu fee credits available within the project watershed, size of the watershed, and land use within the 
watershed. This method is limited and does not provide the level of detail needed for ODOT to predict 
future mitigation needs with much clarity.  

A GIS-based analysis method that could quickly and remotely forecast the location and boundaries of 
streams and wetlands would be of great benefit to ODOT. A methology that would aid in the planning 
of the budget and timeline of projects, as well as identifying watersheds that will require large 
mitigation efforts for advanced credit purchasing is desired. Such a tool would provide cost and time 
savings to ODOT for not only the current four-year planning period but would continue to be of use as it 
is updated with future remotely sensed data.  
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Research Background 

Traditional wetland delineation requires the on-site inspection of soils, vegetation, and hydrology. This 
process was originally described by Cowardin et al. (1979) and their classification of types of wetlands 
is still used today. Presently, a wetland is identified and delineated using the 1987 Corps of Engineers 
Wetlands Delineation Manual and the relevant regional supplements (US Army Corps of Engineers 1987, 
US Army Corps of Engineers 2010). This method requires on the ground determination of soil type, 
vegetation species (during the growing season), and hydrologic features. The protocol for steam 
assessment varies by state and in Ohio it is determined by OEPA guidelines.  

The National Wetlands Inventory (NWI) of the USFWS is a common preliminary tool used to identify the 
locations of wetlands. The NWI was developed using the traditional field indicators for wetlands of 
hydrophytic vegetation, hydric soils, and hydrology as identified by visual interpretation of high-
altitude aerial photography at a large spatial scale. Although the tool has a high accuracy rate for 
identifying wetland location (90% and greater as reported by Kudray and Gale 2000 for forested 
wetlands in Michigan), it is known for conveying inaccurate wetland boundaries (Matthews et al. 2016), 
possibly due to differences in scale and spatial resolution, and studies have found that the NWI 
completely omits 84% to 90% of smaller, isolated forested wetlands and almost all agricultural wetlands 
(Hodgson et al. 2017, Stolt and Baker 1995). Furthermore, the maps used to create the NWI for many 
regions in the country are outdated, with the original imagery taken in the early 1980s. In 2008, Ducks 
Unlimited updated the NWI for Ohio using digital orthophotography from 2006-2007 collected as part of 
the Ohio Statewide Imagery Program (OSIP; Ducks Unlimited 2008). However, even these data have 
become outdated in areas with rapid land development. A final complication is that the NWI maps have 
a target mapping unit which is defined as the estimate of the minimum sized wetland that should be 
consistently mapped. The target mapping unit varies by location due to aerial photography used, 
wetland type, and funding available during the development of the specific map (Tiner 1997). These 
differences can create huge discrepancies in the coverage of wetlands shown in neighboring maps.  

While field surveys provide the most accurate wetland identification, they are usually costly, seasonal, 
time-consuming, spatially limited, and less practical in remote areas. Methods and tools that use 
remote sensing can aid in the delineation process for wetlands and identify probable stream location. 
Aerial imagery can identify changes in vegetation, digital elevation models (DEMs) can determine 
locations of topographic concavity, and the return of wavelengths from Light Detection and Ranging 
(lidar) can distinguish locations of surface water. In addition, online databases can provide information 
on soil type for specific locations. Improving the mapping of wetlands has been the interest of wetland 
scientists for decades (see Guo 2017, Mahdavi 2018, Ozesmi and Bauer 2002, Rundquist 2001). 

To be a jurisdictional wetland under the Clean Water Act, a wetland area must have adequate 
hydrology, hydric soils, and hydrophytes. Remote observation of soil properties is challenging, and thus 
existing studies usually focused on wetland hydrology and vegetation communities. Wetland hydrology 
refers to visual evidence of surface inundation at some point in time and can be observed remotely by 
open water, water under canopy, or saturated soil conditions (Schlaffer 2016). 

Open water is relatively easier to identify by the near-infrared band in multispectral sensors. 
Inundation under canopy is challenging to identify, but radar remote sensing can help to some extent 
(e.g., Schlaffer 2016). Mapping soil moisture is also possible with radar sensors (e.g., Jensen et al. 
2018). Hydrophytes can be mapped either as broad categories such as forest, scrub-shrub, and 
emergent, or as individual species depending on the available spectral information (e.g. Jacome et al. 
2013, Townsend and Walsh 2001, de Almeida Furtado et al. 2016). 

Recent advancements in image processing techniques and data availability allow for more insights to 
this discipline. There is not a unique way of mapping wetlands, but supervised image classification is a 
common method (Mahdianpari et al. 2020). Open access to satellite data including Landsat and Sentinel 
has also contributed to the development of recent wetland mappings. Recent studies often combine 
optical, radar, and topographic data for a more comprehensive observation of wetland hydrology and 
vegetation (e.g. Mahdianpari et al. 2020, Wu et al. 2019, Du et al. 2020, Morandeira et al. 2016). 
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The rapid growth in resolution and quality of aerial imagery has increased the difficulty of image 
analysis. Unlike multispectral sensors, aerial images usually only contain three (red, green, and blue, 
RGB) to four bands (RGB + near-infrared, NIR). The compromised spectral information may not allow 
for detailed hydrophyte identification. However, they have value in identifying small and isolated 
wetlands which are typically ignored by satellite data (e.g. Wu et al. 2019, Lang et al. 2013).  

Encouraged by the technological advancements in this field, regulatory agencies have more recently 
become interested in remotely predicting the location of wetlands and stream channels. Indeed, 
Departments of Transportation for individual states have started to develop their own tools. The North 
Carolina Department of Transportation developed a regression-based model using 12 variables including 
soil, topography, and land use, and used Random Forest, a machine learning algorithm, to improve the 
prediction results (Wang et al. 2015). Maryland, Mississippi, and Colorado Departments of 
Transportation have all developed GIS tools or methods to identify and map wetlands based largely on 
satellite imagery and aerial photography for land cover, land use, and digital elevation.  

A study supported by the South Carolina Department of Transportation (SCDOT) adopted a slightly 
different approach from many other states. Rather than directly classifying spatial attributes into 
wetland classes, SCDOT combined three existing layers—wetlands (NWI), soils (SSURGO), and land 
cover—to generate a wetland likelihood map using a weighted bookkeeping method, improving the NWI 
data accuracies from 51% to 83% (Hodgson et al. 2017). Their results highlight the large uncertainties in 
NWI as well as the values of combining several imperfect maps to a better map. Their research 
particularly emphasizes the value of high-resolution imagery and lidar to characterize certain types of 
wetlands.  

We have highlighted many of the methods and products currently used to remotely identify wetlands 
and stream channels; additional results from the literature review can be seen in Appendices A and B.  
While most recent wetland mapping studies still focus on satellite images, we contend that 
automatically classifying aerial images provides more meaningful spatial details for transportation 
agencies. Furthermore, cloud free aerial imagery collected in the early spring is widely available.  

The overall goal of this research was to provide ODOT with a GIS-based methodology that can more 
accurately predict the location of wetlands and streams within an eight-digit Hydrologic Unit Code 
(HUC) watershed in Ohio to aid in avoiding impacts to these resources as well as planning and 
budgeting for mitigation efforts. This study improved on the work done for SCDOT by going beyond the 
rule-based combination of multi-sourced wetland maps to directly ingest high-quality lidar and aerial 
photos into the refinement and correction of NWI wetland products and overlaying these results with 
ODOT’s four-year plan. Our specific objectives and tasks to meet this goal were to: 

1. Evaluate the existing tools and methods for mitigation forecasting used by other researchers 
and agencies with a thorough review of recent literature pertaining to the remote 
identification of wetlands and stream channels (Task 1). 

2. Develop a GIS-based methodology, or tool, to remotely identify wetlands and streams using 
existing watershed-specific data regarding soil properties, surface topography, vegetation, and 
surface water bodies. To meet this objective, we first gathered and processed available data 
(Task 2) and then used established methods and developed new processes to analyze the data 
(Task 3). 

3. Validate and refine the new tool using existing wetland delineation maps, including NWI, and 
ground-truthing the locations of remotely-identified wetlands and streams (Task 4). 

4. Determine the wetlands and streams that could be impacted by ODOT projects within the four-
year planning period and that will require mitigation (Task 5). 

5. Mentor key ODOT employees on the use and upkeep of the new tool and disseminate the results 
of this research via presentations and publications (Task 6). 
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Research Approach 

Literature Review 
Using keyword searches in research databases including Web of Science and TRID (Transport Research 
International Documentation) we identified relevant refereed publications and gray literature. We 
limited our search to recent (past decade) publications to identify methods that use current databases 
and methodologies. We assessed the strengths and weaknesses of the methodologies of each 
publication and identified the specific aspects that we felt were appropriate to the objectives of this 
research. We created a searchable database of the findings in Microsoft Excel (Appendix A). We used 
the findings from the literature review regarding the specific data requirements, methods, and tools 
identified in other research to guide the development of a methodology for this project. 

Tool Development, Test Study Sites 
We selected five watersheds in Ohio to guide the development of our remote sensing methods for 
wetland classification and stream extraction. These watersheds were selected to represent a range of 
land use and land cover in Ohio and be easily accessible for ground truthing efforts. Four of the 
watersheds (Mohican, Walhonding, Blanchard, and Little Miami) were analyzed at the HUC 8 level while 
the fifth (Thomas Ditch – Little Darby Creek) was analyzed at the HUC 12 level (Figure 1).  

  
Figure 1. Location map of the test watersheds and their associated hydrologic unit code (HUC).  
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Data Collection and Analysis 
Remote identification of stream channels and wetlands used both imagery and lidar data. In all test 
watersheds, we began the analysis with the three-band color-infrared (CIR) aerial images that were 
collected during the Ohio Statewide Imagery Program (OSIP) Phase I (2006-2010). These leaf-off images 
show the difference between forested wetlands and forested uplands because the former appear 
darker. For some watersheds, we also included a three-band true color image collected during the OSIP 
Phase III which captured recent land cover changes (Table 1). Sentinel-2 images were only included in 
the Thomas Ditch – Little Darby HUC12 watershed (Xu et al. 2022). Meanwhile, we derived a digital 
elevation model (DEM) and a digital surface model (DSM) from lidar point clouds. The DEM (topography) 
was created by the triangulation interpolation method from ground returns only and was used to 
extract stream channels. The DSM captures the highest elevations of the surface and typically 
represents either the highest vegetation elevation or ground elevation. Thus, the difference between 
DSM and DEM gives the canopy height information, known as canopy height model (CHM). Canopy 
height information is helpful in separating forested wetlands and non-forested wetlands (Xu et al., 
2018) and was combined with other spectral bands for the image classification. Texture information 
was added to the input bands. First, we conducted principal component analysis (PCA) of the spectral 
bands and picked the top three principal component (PC) bands which usually contain the majority of 
information. Next, focal standard deviation was calculated using a moving circle with the radius of 3 m 
across the entire study site. The three standard deviation bands were then added to the original 
spectral bands as the classification input (Table 1). All images and lidar derivatives were sampled to 1 
m spatial resolution. 

 

Table 1 Watershed characteristics and methods used for wetland classification in each watershed. 

Watershed & HUC Area 
(km2) 

Method Bands 

Blanchard 04100008 1999 RF, 5 classes CIR (3), NDVI (1), CHM (1), PCAStd (3) 

Little Miami 05090202 4553 RF, 5 classes CIR (3), NDVI (1), CHM (1), PCAStd (3) 

Mohican 05040002 & 
Walhonding 05040003 

5843 RF, 6 classes True Color (3), CIR (3), NDVI (1), CHM (1), PCAStd (3) 

Mohican 05040002 & 
Walhonding 05040003 

5843 RF, 5 classes True Color (3), CIR (3), NDVI (1), CHM (1), PCAStd (3) 

Thomas Ditch – Little 
Darby 050600012006 

94 CNN, 7 
classes 

True Color (3), CIR (3), NDVI (1), CHM (1), Sentinel 
NDVI (1), Sentinel NIR (1) 

Note: RF = random forest, CNN = convolutional neural network, CIR = color infrared, NRI = near 
infrared, NDVI = normalized difference vegetation index, CHM = canopy height model. PCAStd is 
calculated as the focal standard deviation of the first three principal components of the above 
spectral bands, with the focal radius of 3 m. Numbers in parentheses denote the numbers of bands. 
See Xu et al. (2022) for the details of the Thomas Ditch – Little Darby watershed classification, which 
included shadow as an additional (7th) class. 
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Supervised image classification was used for wetland extraction. Five to seven classes were defined: 
forested wetland, emergent wetland, open water, forested upland, non-forested upland, developed 
land, and shadow (Table 1). Shadow was only included in the analysis of the Thomas Ditch – Little 
Darby HUC 12 watershed (Xu et al., 2022). Emergent wetlands are not common in some watersheds, so 
the Blanchard and Little Miami only included five classes (without shadow and emergent wetland). We 
used random forest (RF) as the default classifier. This is a common method that has been adopted by 
numerous recent studies (Mahdianpari et al., 2020). For the Thomas Ditch – Little Darby watershed we 
used convolutional neural network (CNN); a deep learning classifier. Both classifiers were implemented 
in MATLAB software (The Mathworks, Inc.). 

To automatically extract stream channels, we used the classic D8 algorithm which is based on 
topographically driven flow direction and flow accumulation and determines channel networks across a 
landscape (see Garbrecht and Martz, 1997). The input for the D8 is the digital terrain model (DTM) of 
the complete watershed from the headwaters, and the output is a channel network. The D8 algorithm 
has been validated in numerous studies in natural channels except in landscapes with very low 
elevation gradient (Xu et al., 2020). Dependent upon the size of the threshold drainage area, the D8 
algorithm can extract all drainage channels including roadside and agricultural ditches. These drainage 
features are not considered as streams for regulatory purposes and therefore the results of the D8 
algorithm will be hereafter be referred to as “channels” rather than “streams” to differentiate. The 
threshold drainage area represents the largest area that could drain to a single starting point for a 
headwater stream. A threshold drainage area of 104 m2 was chosen because the channels identified by 
this value generally agree with the streams visible on the imagery. Bridges and culverts were identified 
on the aerial imagery and were burned onto the DTM for hydraulic enforcement. The raw output of the 
channel extraction is a single-pixel wide raster map. We improved the mapped result by setting the 
channel width as two times (unit: meter) the Strahler stream order (where headwater streams have a 
Strahler value of 1 and downstream of every junction of tributaries the Strahler value increases by 1). 
The result is a binary raster map which includes pixels of channels and non-channels.  

Sample Selection, Field Verification, and Accuracy Assessment  
Within each test watershed we remotely identified wetland sample points through visual inspection of 
high resolution, leaf-off aerial imagery from Google Earth. During the growing season, we field verified 
these wetlands by performing “quick wetland checks” that determined hydrologic features, vegetation 
species, and, when needed, soil type and features. The purpose of the quick checks was not to 
delineate wetland boundaries but to confirm the presence of a wetland at each sample point. In 
addition, we field verified the presence of a selection of streams and wetlands that were identified by 
the NWI within each test watershed (Figure 2). 

The training and testing samples for wetland classification were separately selected. For the image 
classification, we first selected forested wetlands based on the NWI. All forested wetland polygons 
were assigned a random number and were ranked from smallest to largest in area. From the polygon 
with the smallest value, we either confirmed it as a wetland sample or discarded it if it could not be 
confirmed on imagery. Once the confirmed samples reached twenty (or another desired number), we 
stopped the selection and discarded all remaining polygons. The same procedure was used to collect 
emergent wetland samples, though in some watersheds emergent wetlands are not abundant and 
therefore not defined as a class. For the classes except forested and emergent wetlands, training 
samples were manually selected across the study site. This is because those classes are easier to 
identify on imagery. 

The testing samples first included all field validated wetland points. Those samples typically focused on 
forested and emergent wetlands, because they are usually difficult to be confirmed remotely. The field 
surveys were conducted in June through September, 2021. Wetland hydrology, soil condition, and 
hydrophytes were assessed to confirm each wetland sample. For each studied watershed, an equal 
number of upland sample points were randomly generated. The upland points were determined 
remotely by comparing CIR image, NWI, and other sample points. After combining the wetland and 
upland points, a circle with the radius of 3 m was generated around each point in order to generate 
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more testing sample pixels. The testing samples were then compared to the binary classification maps 
to calculate the accuracies. 

The accuracy was calculated by Equation 1 below. Here N is the total number of all testing samples. Nii 
is the number of correctly classified samples for class i. We only conducted the land use / land cover 
accuracy assessment for the Thomas Ditch – Little Darby HUC 12 (see Xu et al. 2022). For the four HUC8 
watersheds, we combined the classification map and channels to a binary classification (wetland and 
upland) and calculated accuracies for the two classes. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛴𝛴𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁

 (Equation 1) 

 

 

(a)  

(b)  

 

Figure 2. Flowcharts of the methods used in this research. (a) Flowchart of the image classification. The 
dashed box for true color aerial imagery is an optional input. (b) Flowchart of the topography-based 
channel extraction. 
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Integration with ODOT four-year plan 
The combined maps of classified wetlands and extracted channels and the ODOT four-year plan were 
used to predict future impacts to wetlands and streams. Ideally, the future project layer would include 
the road centerlines and two attribute fields, the number of lands and the functional class. With such 
information, accurate projected areas (polygons) can by automatically created (e.g., Hodgson et al., 
2017). However, the ODOT four-year plan layer currently only provides centerlines and so we 
conducted a simpler analysis with the assumption of a fixed road width, 50 m buffer distance from the 
centerlines. The entire buffer polygon is considered as new construction area.  

The combined wetland and channel maps were then clipped by the buffers. Wetlands and channels 
within the buffers are considered potential impacts. However, due to the uncertainty 
(misclassification) in the wetland maps, we do not recommend interpreting the impacts at the pixel 
scale but at the focal or zonal scale. Specifically, we detected the impact hotspots 1) focally with a 
moving window and a user-defined radius and 2) zonally within each project buffer. 

 

Research Findings and Conclusions 

Literature Review 
We identified over sixty publications in which the researchers identified wetlands or open bodies of 
water including streams from remotely sensed data. We documented the landscape type, sources of 
data, main methods utilized, and other noteworthy features of each publication in a searchable 
database. A snapshot of the search function of this database is shown in Appendix A and the macro-
enabled file was delivered to ODOT. We also identified land features in the literature such as slope, 
wetness, texture, etc., that were extracted or derived from remotely sensed data and organized these 
features by source of data and method of extraction (Appendix B). From this meta-analysis, we 
determined that using both lidar and optical imagery was important for remote stream and wetland 
identification. While there was no standard method for computer-based identification of wetlands, 
supervised classification of optical imagery, mainly satellite imagery, was the most common method 
used in the literature and provided good results. Vegetated wetlands, whether classified as emergent, 
scrub-shrub, or forested, were found to be the most difficult wetlands to identify remotely. Additional 
research showed that deep-learning methods such as Convolutional Neural Network (CNN) could 
improve classification results for wetland identification.  

Channels and Wetlands at Test Watersheds 
The combined analysis of lidar and optical imagery with the methodology presented in Figure 2 above 
resulted in maps with the location of wetlands (emergent, scrub/shrub, and forested combined) and 
channels within each test watershed. These results are shown in an overview map of Ohio in Figure 3 
below and in more detail for each watershed in Appendix C. The wetlands that were identified by this 
process were dominated by forested wetlands located mostly in the floodplains of stream channels. 
Emergent wetlands were less common but found throughout the study watersheds. The extracted 
channels were consistent with streams identified by the NWI and/or the USGS Stream Stats online tool 
in each watershed and, in addition, included smaller channels such as field drainage ditches and 
headwater tributaries.  

Field verification 

Through the growing season of May to October 2021, 311 sites within the test watersheds were visited 
to confirm the presence or absence of a wetland or channel. Site characteristics and photographs were 
recorded using ArcGIS Collector Classic phone app (Esri). An example data collection form is shown in 
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Appendix D. Of the 311 sites, 194 were verified as wetlands, 68 were channels, 6 were ponds, and 12 
were identified as upland (not a wetland) land cover. In addition, 17 sites were noted as locations 
where NWI had indicated the presence of a wetland, but we did not find wetland indicators on site; 
often these were locations that had been developed with parking lots, structures, or lawn. The field 
verified sites were used for both the training and testing samples in the classification analysis. 
Separately, nearly 1000 sample points were chosen by remote inspection of leaf-off, high resolution 
imagery by our wetland delineation expert. These points were combined with the field-verified 
samples and used as testing samples for an accuracy assessment. 

 

Figure 3. Resulting maps of classified wetlands and extracted channels for the test watersheds. The blue 
areas are classified wetlands including forested wetlands, emergent wetlands (if available), and open 
water. The black lines are extracted channels based on lidar topography. Channels with low Strahler orders 
are not displayed but are included in the detailed maps (Appendix C). 
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Comparison with Existing Data 
Our method mapped significantly more vegetated wetlands than provided by NWI within our test 
watersheds. In the Thomas Ditch-Little Darby Creek watershed our procedure identified 5.1 km2 
forested wetlands while NWI only provided 2.9 km2, giving an increase of 76% in area. Figure 4 visually 
describes the discrepancies between the NWI and the results from our procedures at a site located 
west of South Charleston, Ohio. In an agricultural area in the northern reaches of the Little Miami 
watershed, small wetlands have been left unfarmed or conserved as vegetated areas. These 
fragmented areas are easy to identify as dark patches with the CIR imagery from OSIP Phase I due to 
increased soil moisture (Figure 4b) and thus our process that relies on spectral differences within the 
CIR bands classifies them correctly (Figure 4a). When compared to the NWI information provided for 
the same area, we can see how many of these smaller, vegetated wetlands are omitted by the NWI 
(Figure 4c). 

 

 

Figure 4. Mapping vegetated wetlands omitted by NWI. This site is located west of South Charleston, Ohio, 
in the Little Miami watershed. (a) Predicted wetlands and extracted channels. (b) CIR image from OSIP Phase 
I. (c) NWI wetlands and channels. 
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Our method also mapped significantly more channels than provided by either NWI or the USGS Stream 
Stats online tool. In the Thomas Ditch – Little Darby watershed alone our methods extracted 181.8 km 
of additional channel length within the watershed over NWI, giving an 168% increase in channels. The 
additional channels are a combination of low Strahler order streams, irrigation or drainage ditches for 
agricultural areas, and roadside drainage. Any of which could become captured streams if located 
within a road project area or regulated channels as the definition of these resources is continually 
revised. An example is given in Figure 5 at an interchange east of Mansfield, Ohio. At this location our 
methods extracted a channel that originated in an agricultural field, flowed alongside the south-bound 
lanes of Interstate 71 for approximately 225 m, crossed under the interstate and eventually flowed into 
a larger order stream. Our ground truthing efforts verified the path of this channel. In addition, in 
some locations our method corrected for recent changes in stream location for higher order streams 
due to development or other land use change.  

 

 
Figure 5. Comparison of extracted channels with streams delineated by the USGS Stream Stats online tool 
near an interchange at Interstate 70 and State Highway 39 east of Mansfield, Ohio, in the Mohican 
watershed. (a) Output from streamstats.usgs.gov for streams at this location. (b) Extracted stream channels 
and field sample points. (c) Existing channel at circled sample point in 5b.  
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Accuracy Assessment 
The accuracies, based on our independent testing samples, span a wide range from 64.53% to 85.60% 
(Table 2). Accuracies typically decrease as the watershed size increases. For example, the smallest 
Thomas Ditch – Little Darby HUC 12 has the highest accuracy of 85.6% and the largest watershed has 
only 68.69% accuracy. This is usually because of more heterogeneous ground features in large study 
sites, and more overlapping of spectral information between different classes. Detailed explanation is 
given below and in Figure 6. Noteworthily, the combined Mohican and Walhonding are the only HUC 8 
watersheds that included emergent wetlands in the analysis, but substantial commission error in 
emergent wetland occurred in the classification result (Appendix C). The issue is caused by the 
confusion with agricultural fields, which essentially have the same spectral signature to emergent 
wetlands. Therefore, we conducted two classifications (with and without emergent) for this study site. 

 

Table 2 Classification accuracies for the wetland classification in each watershed. 

Watershed & HUC Area (km2) Accuracy 
(Binary) 

Kappa Method 

Blanchard 04100008 1999 79.46% 0.59 RF, 5 classes 

Little Miami 05090202 4553 73.50% 0.47 RF, 5 classes 

Mohican 05040002 & Walhonding 
05040003 

5843 68.69% 0.37 RF, 6 classes 

Mohican 05040002 & Walhonding 
05040003 

5843 64.53% 0.29 RF, 5 classes 

Thomas Ditch – Little Darby 
050600012006 

94 85.60% 0.70 CNN, 7 classes 

Note: RF = random forest, CNN = convolutional neural network, See Xu et al. (2022) for the details of 
the Thomas Ditch – Little Darby watershed classification, which included shadow as the 7th class. 

 

Additional Considerations to Improve Results 
Each of the test watersheds had physical features or data characteristics that were unique and 
required additional data processing or analysis efforts, especially regarding the classification methods 
for wetland prediction. Here we describe common challenges and suggestions to improve the wetland 
classification results. 

Data Quality. The most common challenge for the automated classification of wetlands from optical 
imagery was the difference in quality between images. Unlike aerial imagery, watershed boundaries 
are not the same as geo-political boundaries nor are they linear. To analyze a complete watershed at 
once, multiple images were combined to create a mosaic that covers the full watershed area and 
clipped to the watershed boundaries. Adjacent images were often taken during different seasons or 
months, displaying differences in soil moisture and vegetation color or cover. For our processing 
efforts, which rely on spectral differences between wetland, upland, open water, and developed areas, 
the spectral differences within the same land cover across imagery were confounding. For example, 
the mosaic CIR image shown in Figure 6b has an alternating vertical pattern between dark (wet) and 
bright (dry). This issue can be more common if the study site is big enough, because precipitation is 
more likely to be non-uniform. This issue can cause misclassification to both wetlands and uplands. For 
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example, the forested wetlands at the center & left of Figure 6b were classified as uplands (Figure 6a), 
while the NWI has a more consistent delineation (Figure 6c). 

To overcome these differences in data quality, we recommend that wetland classification be 
conducted at a smaller scale, perhaps analysis should occur at the county level. Especially when 
adjacent imagery is taken during different seasons, the boundaries for the area of analysis should 
follow the available imagery. The methods for channel extraction, however, rely on the analysis of the 
full watershed at once with complete elevation differences from headwaters to the point of interest, 
therefore this process should still be analyzed on the watershed scale.  

 

 

Figure 6. Influence of data quality on mapping wetlands. The location is along the lower Blanchard River, 
near Cuba, Clinton County, Ohio, in the Blanchard watershed. (a) Predicted forested wetlands, forested 
uplands, open water, and extracted channels. (b) CIR image from OSIP Phase I. (c) NWI wetlands and 
streams. 
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Emergent vs Forested Wetlands. One difficulty with classifying wetlands came in distinguishing 
between type of wetland (ie. forested, scrub-shrub, or emergent as defined by the Cowardin 
classification system). The primary characteristic that differentiates types of inland (palustrine) 
wetlands is the type of vegetation. Optical aerial imagery typically does not provide information that is 
useful to determine specific characteristics of vegetation other than spectral difference due to 
moisture level or color. Lidar data, however, can provide information on vegetation height. Our 
methods merged the canopy height model, a product of lidar data, with the CIR imagery before the 
classification of wetlands to incorporate data on vegetation height. This allowed us to train the 
supervised classifiers using forested and emergent wetland samples. The result identified more 
emergent wetlands from the combined spectral and elevation information (Figure 7a), while the NWI 
based on visual interpretation of imagery alone identified less emergent wetland (Figure 7c). 

As classification between wetland and non-wetland land cover was based on spectral differences, many 
agricultural fields that were wet at the time of imagery (due to irrigation, recent precipitation, or 
season) were incorrectly classified as emergent wetland. As we have included the CHM in our analysis, 
we can resolve this error by removing the emergent wetland class and only identifying wetlands as wet 
areas with vegetation height greater than some given value. This method will omit all emergent 
wetlands from the results and should only be used in watersheds/areas where emergent wetlands are 
scarce. See the watershed maps C4 and C5 provided in Appendix C for a comparison of the combined 
Mohican and Walhonding watersheds with and without the emergent watershed class.  

 

 

Figure 7. Mapping emergent wetlands highlighted in the Killbuck Marsh Wildlife Area, south of Wooster, 
Ohio, in the Walhonding watershed. This site is among the largest emergent wetlands of all tested 
watersheds. (a) Classified forested wetlands, emergent wetlands, open water, and extracted stream 
channels. (b) CIR image from OSIP Phase I. (c) NWI wetlands and streams. 
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Recent changes in land cover or land use. Outdated imagery does not capture recent changes to land 
cover or land use due to development or land conversion. This was confirmed with our ground truthing 
efforts to verify NWI wetlands. We found no evidence of wetland presence at 17 locations where the 
NWI indicated a wetland. These errors were all due to development changes that have occurred since 
the NWI was produced. The use of up-to-date imagery in the analysis can rectify these discrepancies. 
Figure 8 describes an area in the Mohican watershed where the NWI shows a large patchwork of 
emergent and forested wetlands that are artificially and seasonally flooded and surrounded by open 
water (8c). The CIR imagery shows some of this area has been drained and converted to agricultural 
land, especially in the northern arm (8b). Our classification methods based on the CIR imagery predict 
much of the wetland area has remained intact (greens) while the seasonal lake and ponding has been 
reduced to smaller ponds located in the floodplain of the streams (8a).   

 

 

Figure 8. Outdated wetland information due to land use change highlighted in the Funk Bottoms Wildlife 
Area, west of Wooster, Ohio, in the Mohican watershed. (a) Predicted forested wetlands, emergent 
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wetlands, open water, and extracted channels. (b) CIR image from OSIP Phase I. (c) NWI wetlands and 
streams. 

The CIR imagery from OSIP Phase I were collected during 2006-2010. Although more recent than the 
NWI maps, this imagery may still miss changes in land cover during the past decade. Adding bands from 
the true color imagery taken during OSIP Phase III in 2019 improved results in the Mohican and 
Walhonding combined watersheds. However, true color imagery lacks enough spectral information to 
correctly classify open water bodies because these features often have the same color as green 
vegetation and therefore will miss recent additions of water features including wetlands and ponds. 
The added NIR band from Sentinel-2 (2019) in Thomas Ditch – Little Darby Creek watershed improved 
results and captured the recent construction of detention ponds in one example area. 

Open Water Bodies. Wind across the surface of an open water body such as a lake or pond as well as 
water with high turbidity can appear bright with spectral similarities to bare ground or hard surfaces. 
This effect causes misclassification of open water bodies as developed areas (concrete, asphalt, roof). 
Figure 9 shows a reservoir along a river with adjacent connected ponds. The main channel has high 
turbidity due to muddy receiving waters while the floodplain ponds have much lower turbidity due to 
low connectivity with the main channel or possibly settling of sediments. There is, however, evidence 
of wind creating waves in these side ponds. Much of the main channel of the reservoir is classified as 
developed due to high turbidity levels. While the side ponds are correctly classified as open water, 
they have “clouds” or pixelated areas where the waves can be seen that are misclassified as developed 
land. 

Incorporating a height threshold would not be helpful in this situation because developed areas can be 
located at ground level (roads). The solution for this error must be human interpretation of the final 
classification results. Visual comparison with the imagery and classification results can quickly identify 
open water bodies and recognize this type of error.  

 

 
Figure 9. Effects of wind or sediments in open water bodies. Left image is a true color image from OSIP 
Phase I while the right image shows the classification results for this same area. Classification results 
should show blue for open water and red for developed areas (roofs, asphalt, concrete).  
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Tree Shadows and Canopy Cover over Roads. A noticeable limitation of our method for wetland 
classification is the influence of tree shadows. The shadows are more obvious on high resolution 
imagery than satellite imagery with moderate resolution. Tree shadows can be incorrectly classified as 
forested wetlands due to their spectral similarity. This is especially true along roadways where there is 
canopy cover over a dark asphalt surface or along property boundaries where there is a single row of 
trees. The tree canopy over roadways can cause significant errors when identifying ODOT projects that 
interact with wetlands. In the example presented in Figure 10, the roadway (OH-520) is classified as 
forested wetland due to canopy coverage from the forest on the west side of the road. Our process 
identified all road projects along this segment of the road as impacting wetlands due to the mis-
identified forested wetland within the road right-of-way as well as the emergent wetland alongside the 
road to the east. In reality, only road widening and other projects that extend beyond the right-of-way 
of OH-520 would impact wetland areas. Human interpretation will be required at this step to visually 
compare the classification results and the impacted ODOT projects to confirm impacted wetlands.  

To correct for the shadow effect, additional deep learning methods were applied in the Thomas Ditch – 
Little Darby Creek watershed. By including a shadow class, the CNN classifier correctly identified most 
tree shadows, usually along the northern edge of forests or buildings. However, the tradeoff is a 
potential decrease in the classification accuracy for forested wetlands. This is because of the limited 
spectral information provided by the aerial imagery, typically three 8-bit bands. Open water, saturated 
soil, and shadow have very similar spectral signatures and thus cause confusions. The CNN method, 
which utilizes the contextual information, improves the pixel based maximum likelihood. This method 
is very time and resource heavy and therefore was not applied in the larger watersheds. 
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Figure 10. Effect of tree lines and canopy cover over roads near Kilbuck, Ohio, in the Walhonding 
watershed. (a) NWI wetlands and streams. (b) Predicted wetlands (greens), open water (blue), and other 
land classifications. (c) ODOT project segment identified on OH-520. (d) Project segment that could impact 
wetlands or streams.  

 

Impacted ODOT Projects in Test Watersheds 
The analysis of the results from this research on the projects of ODOT’s four-year plan within the test 
watersheds are shown in Figure 11. All watersheds will have impacts but the high impacts (e.g., deep 
blue) are only within Little Miami, Mohican, and Walhonding watersheds. The Blanchard watershed has 
generally less (below 3/8). One explanation is the bias in the image classification towards more 
uplands, because Blanchard CIR images show a repetitive wet and dry pattern (cover image of this 
report). Another explanation is that in areas where the primary land use is agriculture, wetlands do not 
widely occur except along streams and in isolated forests (Figure C2). 
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Figure 11. Wetland and stream impacts caused by the ODOT next four-year construction plan. Ratio 
represents the portion of wetlands and streams within 50 m buffer distance.  

 

Knowledge Transfer 
Initial results from the analysis of the Thomas Ditch – Little Darby watershed and the subsequent 
mapping methodology that was developed for that location were presented at the Annual Meeting of 
the Transportation Research Board of the National Academies of Science in Washington, D.C. in January 
2022. The accompanying paper was accepted for publication in the Transportation Research Record (Hu 
et al., 2022 In Press). 
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We developed a user manual that includes step-by-step instructions on how to apply this methodology 
and the algorithms to future areas in Ohio. The user manual provides screen views of each of the 
software and tools used to analyze data as well as code. A snapshot of the user manual is provided in 
Appendix E. The manual was provided to ODOT in June 2022.   

 

Research Conclusions 
This study proposed and tested a cost-effective framework for mapping wetlands and channels with 
aerial imagery and lidar derivatives. All the data used in this study are publicly accessible. Early spring 
aerial imagery is widely available in the US and some parts of the world. To identify wetlands, the CIR 
images provide essential information. Lidar point clouds are also available for most areas in the US and 
other countries. The importance of lidar observation of forested landscapes have been highlighted in 
recent studies (e.g. Xu et al. 2020, Xu et al. 2021) where optical satellites can omit substantial 
inundated areas and subtle channels. 

We purposely chose a simple process and selected a small number of training polygons, in order to 
make the wetland classification method more adaptable to other areas. Although increasing the 
training sample size and choosing a more complex deep learning network could potentially increase the 
accuracy, they could also overfit the dataset and make the methods less universal.  

The framework was validated in five watersheds of varying sizes in Ohio. The merged wetland class 
achieved 64.5% to 85.6% accuracy. Field surveys confirmed that NWI misses small, vegetated wetlands 
and low-order streams. The findings demonstrated a cost-effective way of identifying ODOT project 
areas that could interact with wetlands or streams during early planning before field studies are 
undertaken. The transportation community can benefit from the updated wetland maps by reducing 
potential environmental impacts from their future development projects and aid in project planning, 
specifically budgeting. Additionally, the results could be used by conservation groups or regulatory 
agencies for wetland mitigation by predicting sites with potential wetland hydrology. 

Recommendations for Implementation 

We have developed a method to predict the location of wetlands and channels in a format that can be 
combined with existing TIMS data regarding road projects in the revolving four-year plan. We 
recommend that ODOT apply our method and continue the analysis for additional areas throughout 
Ohio. The method is such that ODOT can continue to implement these procedures as new imagery 
becomes available. The resulting wetlands and channel maps can continue to be overlaid with planned 
projects in the four-year window to prioritize and budget for mitigation efforts in perpetuity.  

Based on the challenges that we encountered in our five test watersheds as outlined in the “Additional 
Considerations to Improve Results” section of this report, we recommend the following for 
implementation of the research methods by ODOT: 

● Conduct the wetland analysis at a smaller scale to avoid differences in image quality. We 
recommend that ODOT consider differences in image dates before mosaicking adjacent images 
and conduct the wetland analysis on images taken at the same time. This is only an issue with 
optical imagery; channel analysis should occur at a watershed scale and include the full 
watershed from headwaters. 

● Combine vegetation height (from lidar) with optical imagery to allow for the differentiation of 
wetland type. This is a defining step in our methodology that sets it apart from methods that 
other researchers have used. This step allows ODOT to distinguish between emergent and 
forested wetlands and provides a means to remove wet agricultural land that has been mis-
classified as emergent wetland. 

● Use up-to-date imagery to detect recent land cover changes. Our process for wetland 
classification relies on the thermal bands of aerial imagery. If an area only has CIR images from 
OSIP Phase I (2006-2010) available, we recommend including a thermal band from recent 
satellite coverage to provide details on recent land cover changes.  
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● Human interpretation of the results, especially the verification of ODOT projects interacting 
with wetland areas, is recommended. While we have worked to automate the prediction of 
wetlands and channels on the landscape as much as possible, remote sensing and artificial 
intelligence cannot yet replace the understanding and visual abilities of humans. The common 
problems to be aware of when interpreting the results are: tree lines and road right-of-ways 
classified as forested wetland due to shadows and larger open water bodies (ponds, lakes, 
reservoirs) classified as developed land. 

ODOT personnel were taught key steps in this methodology through a hands-on training session in April 
2022. The user manual provides additional guidance as ODOT continues to implement our methods 
across the state and with future projects.   

One of the main products from this analysis is a GIS map that identifies the location of wetlands and 
channels. This file can be exported as a stand-alone map or as a layer that can be incorporated into 
other maps. This type of information could be beneficial to many other agencies and entities, 
especially those that are involved in the conservation or regulation of wetlands and streams. We have 
already had interest from the Ohio Environmental Protection Agency and Ohio-Kentucky-Indiana 
Regional Council of Governments (OKI). 

We developed this methodology to rely on publicly accessible data and work with software programs 
that ODOT already has access to (ArcGIS, MATLAB) or that could be obtained for free (QGIS, R, 
LAStools, and Visual Studio Community). Other than ODOT employee time, no additional resources will 
be required to implement this methodology.  
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Appendix A: Database of Literature Regarding Remote Wetland 

Identification 

Image of the search tool for the remote wetland identification database after searching the keyword 
“classification” within the “methods” of all publications in the database: 

 
  



 

   

Appendix B: Summary of Feature Extraction from the Literature 

The tables below show the features used for mapping wetlands and channels in the literature. Those 
features can be derived based on individual pixels or image objects (aggregates of pixels). Most 
features are defined and derived based on multispectral satellite images. This project, however, 
focused on high-resolution aerial images which typically contain three to four bands. Thus, only NDVI 
was utilized and it helped separate green vegetation from other ground features. Nevertheless, when 
better images (e.g., high-resolution multispectral images) are available in the future, more features 
can be derived and tested in the applications. 

 

 



 

   

 

 

 

  



 

   

Appendix C: Results of Watershed Classification and Channel Extraction in 

Test Watersheds 

 

 
Figure C1. Wetlands and channels for the Thomas Ditch – Little Darby Creek HUC 12 watershed. 

 

  



 

   

 
Figure C2. Wetlands and channels for the Blanchard HUC 8 watershed. Emergent wetlands were not mapped due 
to their scarcity. 

 



 

   

 
Figure C3. Wetlands and channels for the Little Miami HUC 8 watershed. Emergent wetlands were not mapped 
due to their scarcity. 



 

   

 
Figure C4. Wetlands and channels for the Mohican HUC 8 and Walhonding HUC 8 watersheds without emergent 
wetlands. 



 

   

 
Figure C5. Wetlands and channels for the Mohican HUC 8 and Walhonding HUC 8 watersheds including emergent 
wetlands. 

 

  



 

   

Appendix D: Example Field Data Collection Form 

Screenshots from ArcGIS Collector Classic application (ESRI) for iPhone.  

Left: location map with watershed boundaries, channels, and sample points identified. Right: 
completed data collection form for one of the wetland sample points. 

 

 

 

  



 

   

Appendix E: Example Page from the User Manual   
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